Effects of Warm Rolling Temperature on Microstructure and Texture Evolution in Cu–10Fe Alloy Sheets
This study systematically investigates the influence of rolling temperature (cold rolling to 500 °C) on the microstructure and properties of Cu–10Fe alloy. The results show that with an increasing temperature, the Fe phase morphology transitions gradually from fibrous to spherical/ellipsoidal, while...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Metals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4701/15/6/606 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study systematically investigates the influence of rolling temperature (cold rolling to 500 °C) on the microstructure and properties of Cu–10Fe alloy. The results show that with an increasing temperature, the Fe phase morphology transitions gradually from fibrous to spherical/ellipsoidal, while the Cu grain size first decreases and then increases. At 500 °C rolling, a bimodal structure forms (fine recrystallized grains coordinate deformation, and coarse grains provide strengthening), with dynamic recovery significantly reducing dislocation density, but the recrystallization rate remains only 11.9%. Texture analysis reveals that in the cold-rolled state, Brass-R texture (2.45) dominates, resulting in low elongation (1.96%). At 400–450 °C, the synergistic effect of Goss and Copper textures (6.9–13.82) improves elongation to 7.03%. At 500 °C, Brass texture (14.58) becomes dominant, increasing elongation to 9.21%, and tensile strength rises from 443 MPa to 472 MPa. Electrical conductivity increases from 10.09% IACS (cold-rolled) to 19.43% IACS (500 °C), mainly due to dynamic recovery and Fe precipitation alleviating lattice distortion. |
|---|---|
| ISSN: | 2075-4701 |