The Orlicz Electrostatic <i>q</i>-Capacity Minkowski Problem

The existence of solutions to the discrete Orlicz electrostatic <i>q</i>-capacity Minkowski problem was given by Ji and Yang when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1<...

Full description

Saved in:
Bibliographic Details
Main Authors: Hui Zeng, Lijuan Liu, Lu Yin, Rigao He
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/2/86
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850082231880515584
author Hui Zeng
Lijuan Liu
Lu Yin
Rigao He
author_facet Hui Zeng
Lijuan Liu
Lu Yin
Rigao He
author_sort Hui Zeng
collection DOAJ
description The existence of solutions to the discrete Orlicz electrostatic <i>q</i>-capacity Minkowski problem was given by Ji and Yang when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>. Now, we have studied the problem by removing the assumption that the measure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> does not have a pair of antipodal point masses. By means of approximation, the sufficient condition is given for the existence of solutions to this problem for general measures when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, which is an extension of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> electrostatic <i>q</i>-capacity Minkowski problem when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-d2d4b35c3de242e097fd9dc79e5be1d3
institution DOAJ
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-d2d4b35c3de242e097fd9dc79e5be1d32025-08-20T02:44:34ZengMDPI AGAxioms2075-16802025-01-011428610.3390/axioms14020086The Orlicz Electrostatic <i>q</i>-Capacity Minkowski ProblemHui Zeng0Lijuan Liu1Lu Yin2Rigao He3School of Mathematics and Statistics, Hunan University of Science and Technology, Xiangtan 411201, ChinaSchool of Mathematics and Statistics, Hunan University of Science and Technology, Xiangtan 411201, ChinaSchool of Mathematics and Statistics, Hunan University of Science and Technology, Xiangtan 411201, ChinaDepartment of Mathematics, Jiangxi University of Science and Technology, Ganzhou 341000, ChinaThe existence of solutions to the discrete Orlicz electrostatic <i>q</i>-capacity Minkowski problem was given by Ji and Yang when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>. Now, we have studied the problem by removing the assumption that the measure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> does not have a pair of antipodal point masses. By means of approximation, the sufficient condition is given for the existence of solutions to this problem for general measures when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, which is an extension of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> electrostatic <i>q</i>-capacity Minkowski problem when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/14/2/86Orlicz–Minkowski problemelectrostatic <i>q</i>-capacityOrlicz electrostatic <i>q</i>-capacitary measure
spellingShingle Hui Zeng
Lijuan Liu
Lu Yin
Rigao He
The Orlicz Electrostatic <i>q</i>-Capacity Minkowski Problem
Axioms
Orlicz–Minkowski problem
electrostatic <i>q</i>-capacity
Orlicz electrostatic <i>q</i>-capacitary measure
title The Orlicz Electrostatic <i>q</i>-Capacity Minkowski Problem
title_full The Orlicz Electrostatic <i>q</i>-Capacity Minkowski Problem
title_fullStr The Orlicz Electrostatic <i>q</i>-Capacity Minkowski Problem
title_full_unstemmed The Orlicz Electrostatic <i>q</i>-Capacity Minkowski Problem
title_short The Orlicz Electrostatic <i>q</i>-Capacity Minkowski Problem
title_sort orlicz electrostatic i q i capacity minkowski problem
topic Orlicz–Minkowski problem
electrostatic <i>q</i>-capacity
Orlicz electrostatic <i>q</i>-capacitary measure
url https://www.mdpi.com/2075-1680/14/2/86
work_keys_str_mv AT huizeng theorliczelectrostaticiqicapacityminkowskiproblem
AT lijuanliu theorliczelectrostaticiqicapacityminkowskiproblem
AT luyin theorliczelectrostaticiqicapacityminkowskiproblem
AT rigaohe theorliczelectrostaticiqicapacityminkowskiproblem
AT huizeng orliczelectrostaticiqicapacityminkowskiproblem
AT lijuanliu orliczelectrostaticiqicapacityminkowskiproblem
AT luyin orliczelectrostaticiqicapacityminkowskiproblem
AT rigaohe orliczelectrostaticiqicapacityminkowskiproblem