A Hardware Efficient Random Number Generator for Nonuniform Distributions with Arbitrary Precision
Nonuniform random numbers are key for many technical applications, and designing efficient hardware implementations of non-uniform random number generators is a very active research field. However, most state-of-the-art architectures are either tailored to specific distributions or use up a lot of h...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | International Journal of Reconfigurable Computing |
Online Access: | http://dx.doi.org/10.1155/2012/675130 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nonuniform random numbers are key for many technical applications, and designing efficient hardware implementations of non-uniform random
number generators is a very active research field. However, most state-of-the-art architectures are either tailored to specific distributions or use up a lot of hardware resources. At ReConFig 2010, we have presented a new design that saves up to 48% of area compared to state-of-the-art inversion-based implementation, usable for arbitrary distributions and precision. In this paper, we introduce a more flexible version together with a refined segmentation scheme that allows to further reduce the approximation error significantly. We provide a free software tool allowing users to implement their own distributions easily, and we have tested our random number generator thoroughly by statistic analysis and two application tests. |
---|---|
ISSN: | 1687-7195 1687-7209 |