A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization

A novel robust hybrid metaheuristic optimization approach, which can be considered as an improvement of the recently developed bat algorithm, is proposed to solve global numerical optimization problems. The improvement includes the addition of pitch adjustment operation in HS serving as a mutation o...

Full description

Saved in:
Bibliographic Details
Main Authors: Gaige Wang, Lihong Guo
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2013/696491
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel robust hybrid metaheuristic optimization approach, which can be considered as an improvement of the recently developed bat algorithm, is proposed to solve global numerical optimization problems. The improvement includes the addition of pitch adjustment operation in HS serving as a mutation operator during the process of the bat updating with the aim of speeding up convergence, thus making the approach more feasible for a wider range of real-world applications. The detailed implementation procedure for this improved metaheuristic method is also described. Fourteen standard benchmark functions are applied to verify the effects of these improvements, and it is demonstrated that, in most situations, the performance of this hybrid metaheuristic method (HS/BA) is superior to, or at least highly competitive with, the standard BA and other population-based optimization methods, such as ACO, BA, BBO, DE, ES, GA, HS, PSO, and SGA. The effect of the HS/BA parameters is also analyzed.
ISSN:1110-757X
1687-0042