Extended Brauer analysis of some Dynkin and Euclidean diagrams

The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras ind...

Full description

Saved in:
Bibliographic Details
Main Authors: Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, José Gregorio Rodríguez-Nieto, Odette M Mendez, Ricardo Hugo Arteaga-Bastidas
Format: Article
Language:English
Published: AIMS Press 2024-10-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2024266
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590776881643520
author Agustín Moreno Cañadas
Pedro Fernando Fernández Espinosa
José Gregorio Rodríguez-Nieto
Odette M Mendez
Ricardo Hugo Arteaga-Bastidas
author_facet Agustín Moreno Cañadas
Pedro Fernando Fernández Espinosa
José Gregorio Rodríguez-Nieto
Odette M Mendez
Ricardo Hugo Arteaga-Bastidas
author_sort Agustín Moreno Cañadas
collection DOAJ
description The analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.
format Article
id doaj-art-d25024da04244822888e1db03b0dc89c
institution Kabale University
issn 2688-1594
language English
publishDate 2024-10-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj-art-d25024da04244822888e1db03b0dc89c2025-01-23T07:52:53ZengAIMS PressElectronic Research Archive2688-15942024-10-0132105752578210.3934/era.2024266Extended Brauer analysis of some Dynkin and Euclidean diagramsAgustín Moreno Cañadas0Pedro Fernando Fernández Espinosa1José Gregorio Rodríguez-Nieto2Odette M Mendez3Ricardo Hugo Arteaga-Bastidas4Departamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404, Kra 30 No 45-03, Bogotá 11001000, ColombiaDepartamento de Matemáticas, Universidad de Caldas, Calle 65 No 26-10, Manizales, ColombiaDepartamento de Matemáticas, Universidad Nacional de Colombia, Kra 65 No 59A-110, Medellín, ColombiaDepartamento de Matemáticas, Universidad Nacional de Colombia, Sede La Nubia, Manizales, ColombiaDepartamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404, Kra 30 No 45-03, Bogotá 11001000, ColombiaThe analysis of algebraic invariants of algebras induced by appropriated multiset systems called Brauer configurations is a Brauer analysis of the data defining the multisets. Giving a complete description of such algebraic invariants (e.g., giving a closed formula for the dimensions of algebras induced by significant classes of Brauer configurations) is generally a tricky problem. Ringel previously proposed an analysis of this type in the case of Dynkin algebras, for which so-called Dynkin functions were used to study the numerical behavior of invariants associated with such algebras. This paper introduces two additional tools (the entropy and the covering graph of a Brauer configuration) for Brauer analysis, which is applied to Dynkin and Euclidean diagrams to define Dynkin functions associated with Brauer configuration algebras. Properties of graph entropies defined by the corresponding covering graphs are given to establish relationships between the theory of Dynkin functions, the Brauer configuration algebras theory, and the topological content information theory.https://www.aimspress.com/article/doi/10.3934/era.2024266brauer configuration algebra (bca)dynkin diagramdynkin functioneuclidean diagramgraph entropyinteger categorificationpath algebraquiver representation
spellingShingle Agustín Moreno Cañadas
Pedro Fernando Fernández Espinosa
José Gregorio Rodríguez-Nieto
Odette M Mendez
Ricardo Hugo Arteaga-Bastidas
Extended Brauer analysis of some Dynkin and Euclidean diagrams
Electronic Research Archive
brauer configuration algebra (bca)
dynkin diagram
dynkin function
euclidean diagram
graph entropy
integer categorification
path algebra
quiver representation
title Extended Brauer analysis of some Dynkin and Euclidean diagrams
title_full Extended Brauer analysis of some Dynkin and Euclidean diagrams
title_fullStr Extended Brauer analysis of some Dynkin and Euclidean diagrams
title_full_unstemmed Extended Brauer analysis of some Dynkin and Euclidean diagrams
title_short Extended Brauer analysis of some Dynkin and Euclidean diagrams
title_sort extended brauer analysis of some dynkin and euclidean diagrams
topic brauer configuration algebra (bca)
dynkin diagram
dynkin function
euclidean diagram
graph entropy
integer categorification
path algebra
quiver representation
url https://www.aimspress.com/article/doi/10.3934/era.2024266
work_keys_str_mv AT agustinmorenocanadas extendedbraueranalysisofsomedynkinandeuclideandiagrams
AT pedrofernandofernandezespinosa extendedbraueranalysisofsomedynkinandeuclideandiagrams
AT josegregoriorodrigueznieto extendedbraueranalysisofsomedynkinandeuclideandiagrams
AT odettemmendez extendedbraueranalysisofsomedynkinandeuclideandiagrams
AT ricardohugoarteagabastidas extendedbraueranalysisofsomedynkinandeuclideandiagrams