Optical synchronous signal demodulation-based quartz-enhanced photoacoustic spectroscopy for remote, multi-point methane detection in complex environments

We present a novel optical synchronized signal demodulation (OSSD) method applied in quartz-enhanced photoacoustic spectroscopy (QEPAS) for remote gas sensing. Using 1 % of the laser source as an optical synchronization signal, kilometer-scale remote gas detection was achieved, overcoming the challe...

Full description

Saved in:
Bibliographic Details
Main Authors: Bo Sun, Tingting Wei, Mingjiang Zhang, Lijun Qiao, Zhe Ma, Angelo Sampaolo, Pietro Patimisco, Vincenzo Spagnolo, Hongpeng Wu, Lei Dong
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Photoacoustics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S221359792500031X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a novel optical synchronized signal demodulation (OSSD) method applied in quartz-enhanced photoacoustic spectroscopy (QEPAS) for remote gas sensing. Using 1 % of the laser source as an optical synchronization signal, kilometer-scale remote gas detection was achieved, overcoming the challenges of long-distance real-time detection in complex environments with conventional QEPAS. A time-sharing OSSD-QEPAS system for sewer methane detection was subsequently developed. The system’s modulation depth was optimized, and the catalytic effect of water vapor on photoacoustic signals was validated, resulting in a CH₄ sensor achieving a detection limit of 445 ppb with a 300-ms averaging time, and an excellent linear dynamic range with a R2 = 0.999. To demonstrate the stability, robustness, and accuracy of the OSSD-QEPAS system, continuous methane measurements covering a 14-hour period at two different sewer locations on campus were performed.
ISSN:2213-5979