The Existence Result for a Class of p-Kirchhoff-Type Problem with a Multilinear Growth Nonlinearity

In this paper, we firstly discuss the existence of the least energy sign-changing solutions for a class of p-Kirchhoff-type problems with a (2p-1)-linear growth nonlinearity. The quantitative deformation lemma and Non-Nehari manifold method are used in the paper to prove the main results. Remarkably...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiangyan Yao, Wei Han
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2019/3713909
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we firstly discuss the existence of the least energy sign-changing solutions for a class of p-Kirchhoff-type problems with a (2p-1)-linear growth nonlinearity. The quantitative deformation lemma and Non-Nehari manifold method are used in the paper to prove the main results. Remarkably, we use a new method to verify that Mb≠∅. The main results of our paper are the existence of the least energy sign-changing solution and its corresponding energy doubling property. Moreover, we also give the convergence property of the least energy sign-changing solution as the parameter b↘0.
ISSN:1026-0226
1607-887X