Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)
Particular solutions and complementary functions are obtained for the functional equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) in the forms of a convolution type integral and of infinite series.
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1992-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171292001005 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832564571710160896 |
---|---|
author | Ll. G. Chambers |
author_facet | Ll. G. Chambers |
author_sort | Ll. G. Chambers |
collection | DOAJ |
description | Particular solutions and complementary functions are obtained for the functional equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) in the forms of a convolution type integral and of infinite series. |
format | Article |
id | doaj-art-d203b1913a2e40b8a0c6bbc3f8fcfc47 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1992-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-d203b1913a2e40b8a0c6bbc3f8fcfc472025-02-03T01:10:44ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251992-01-0115477378010.1155/S0161171292001005Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)Ll. G. Chambers0School of Mathematics, University College of North Wales, Dean Street, Gwynedd, Bangor LL57 1UT, United KingdomParticular solutions and complementary functions are obtained for the functional equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) in the forms of a convolution type integral and of infinite series.http://dx.doi.org/10.1155/S0161171292001005neutral differential-difference equation. |
spellingShingle | Ll. G. Chambers Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) International Journal of Mathematics and Mathematical Sciences neutral differential-difference equation. |
title | Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) |
title_full | Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) |
title_fullStr | Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) |
title_full_unstemmed | Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) |
title_short | Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) |
title_sort | solutions of the neutral differential difference equation αx t βx t r γx t δx t r f t |
topic | neutral differential-difference equation. |
url | http://dx.doi.org/10.1155/S0161171292001005 |
work_keys_str_mv | AT llgchambers solutionsoftheneutraldifferentialdifferenceequationaxtbxtrgxtdxtrft |