Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)

Particular solutions and complementary functions are obtained for the functional equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) in the forms of a convolution type integral and of infinite series.

Saved in:
Bibliographic Details
Main Author: Ll. G. Chambers
Format: Article
Language:English
Published: Wiley 1992-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171292001005
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564571710160896
author Ll. G. Chambers
author_facet Ll. G. Chambers
author_sort Ll. G. Chambers
collection DOAJ
description Particular solutions and complementary functions are obtained for the functional equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) in the forms of a convolution type integral and of infinite series.
format Article
id doaj-art-d203b1913a2e40b8a0c6bbc3f8fcfc47
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1992-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-d203b1913a2e40b8a0c6bbc3f8fcfc472025-02-03T01:10:44ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251992-01-0115477378010.1155/S0161171292001005Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)Ll. G. Chambers0School of Mathematics, University College of North Wales, Dean Street, Gwynedd, Bangor LL57 1UT, United KingdomParticular solutions and complementary functions are obtained for the functional equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) in the forms of a convolution type integral and of infinite series.http://dx.doi.org/10.1155/S0161171292001005neutral differential-difference equation.
spellingShingle Ll. G. Chambers
Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)
International Journal of Mathematics and Mathematical Sciences
neutral differential-difference equation.
title Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)
title_full Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)
title_fullStr Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)
title_full_unstemmed Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)
title_short Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)
title_sort solutions of the neutral differential difference equation αx t βx t r γx t δx t r f t
topic neutral differential-difference equation.
url http://dx.doi.org/10.1155/S0161171292001005
work_keys_str_mv AT llgchambers solutionsoftheneutraldifferentialdifferenceequationaxtbxtrgxtdxtrft