Quantifying the Resolution Sensitivity of the Kain–Fritsch Scheme Across the Gray Zone by Isolating Interactions: A TWP‐ICE Case Study
Abstract The resolution sensitivity of the Kain–Fritsch (KF) convection scheme and the role of interactions between the physics and dynamics within the gray zone (<10 km) were investigated using the Separate Physics and Dynamics Experiment (SPADE) framework. Two groups of experiments were conduct...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Geophysical Union (AGU)
2025-05-01
|
| Series: | Journal of Advances in Modeling Earth Systems |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2024MS004604 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The resolution sensitivity of the Kain–Fritsch (KF) convection scheme and the role of interactions between the physics and dynamics within the gray zone (<10 km) were investigated using the Separate Physics and Dynamics Experiment (SPADE) framework. Two groups of experiments were conducted using the Weather Research and Forecasting (WRF) model via traditional (Tradition) runs and SPADE runs with resolutions of 1, 2, 4, and 8 km during the wet period of the Tropical Warm Pool–International Cloud Experiment (TWP‐ICE). Results show that the KF scheme simulates the weakened convective processes well as the resolution increases in both groups, and the changes in the convective variables with resolution in SPADE are smaller than in the Tradition group. This indicates the important effects of interactions between model components on convection parameterizations as the resolution changes. Additionally, the microphysics variables remain nearly unchanged with resolution in SPADE and weaken slightly in Tradition as the resolution decreases, suggesting the relatively weaker influences of model interactions for the resolved‐cloud parameterization. Therefore, the scale‐aware behavior of KF scheme is further strengthened in Tradition runs, primarily through inhibiting the strength of stratiform processes through physics–dynamics interactions and physical components. |
|---|---|
| ISSN: | 1942-2466 |