Kinetic mechanism of FeCr2O4 reduction in carbon-containing iron melt

Direct alloying of chromium by chromite attracts a lot of interest for its superiority in energy-saving and process simplification. The knowledge of chromium alloying by reduction of FeCr2O4, the main component of chromite, is a key to understanding the mechanism of chromium alloying from chromite....

Full description

Saved in:
Bibliographic Details
Main Authors: Xiao Y.-Y., Wang L.-J., Liu S.-Y., He X.-B., Chou K.-C.
Format: Article
Language:English
Published: University of Belgrade, Technical Faculty, Bor 2023-01-01
Series:Journal of Mining and Metallurgy. Section B: Metallurgy
Subjects:
Online Access:https://doiserbia.nb.rs/img/doi/1450-5339/2023/1450-53392300010X.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Direct alloying of chromium by chromite attracts a lot of interest for its superiority in energy-saving and process simplification. The knowledge of chromium alloying by reduction of FeCr2O4, the main component of chromite, is a key to understanding the mechanism of chromium alloying from chromite. The effect of melt composition (carbon and chromium addition) and temperature on the reduction of FeCr2O4 by carbon-containing iron melt was studied. The higher the carbon content was in the melt, the higher chromium recovery was obtained. Similarly, the higher temperature is favorable for the reduction of FeCr2O4. The reduction of FeCr2O4 was impeded by chromium addition due to the lower activity of carbon resulting from the strong attraction between carbon and chromium. The kinetics of FeCr2O4 reduction by carbon dissolving in iron melt was investigated, and the results indicated that the controlling step was the chemical reaction at the FeCr2O4/melt interface at 1823K. The calculated activation energy for the chemical reaction was 392.82 kJ/mol.
ISSN:1450-5339
2217-7175