Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian Mappings

Suppose that E is a real normed linear space, C is a nonempty convex subset of E, T:C→C is a Lipschitzian mapping, and x*∈C is a fixed point of T. For given x0∈C, suppose that the sequence {xn}⊂C is the Mann iterative sequence defined by xn+1=(1-αn)xn+αnTxn,n≥0, where {αn} is a sequence in [0, 1], ∑...

Full description

Saved in:
Bibliographic Details
Main Authors: Chang-He Xiang, Jiang-Hua Zhang, Zhe Chen
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/327878
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550102699343872
author Chang-He Xiang
Jiang-Hua Zhang
Zhe Chen
author_facet Chang-He Xiang
Jiang-Hua Zhang
Zhe Chen
author_sort Chang-He Xiang
collection DOAJ
description Suppose that E is a real normed linear space, C is a nonempty convex subset of E, T:C→C is a Lipschitzian mapping, and x*∈C is a fixed point of T. For given x0∈C, suppose that the sequence {xn}⊂C is the Mann iterative sequence defined by xn+1=(1-αn)xn+αnTxn,n≥0, where {αn} is a sequence in [0, 1], ∑n=0∞αn2<∞, ∑n=0∞αn=∞. We prove that the sequence {xn} strongly converges to x* if and only if there exists a strictly increasing function Φ:[0,∞)→[0,∞) with Φ(0)=0 such that limsup n→∞inf j(xn-x*)∈J(xn-x*){〈Txn-x*,j(xn-x*)〉-∥xn-x*∥2+Φ(∥xn-x*∥)}≤0.
format Article
id doaj-art-d1df681da22c4aca844beb3a51fc328e
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-d1df681da22c4aca844beb3a51fc328e2025-02-03T06:07:46ZengWileyJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/327878327878Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian MappingsChang-He Xiang0Jiang-Hua Zhang1Zhe Chen2College of Mathematics, Chongqing Normal University, Chongqing 400047, ChinaSchool of Management, Shandong University, Shandong Jinan 250100, ChinaCollege of Mathematics, Chongqing Normal University, Chongqing 400047, ChinaSuppose that E is a real normed linear space, C is a nonempty convex subset of E, T:C→C is a Lipschitzian mapping, and x*∈C is a fixed point of T. For given x0∈C, suppose that the sequence {xn}⊂C is the Mann iterative sequence defined by xn+1=(1-αn)xn+αnTxn,n≥0, where {αn} is a sequence in [0, 1], ∑n=0∞αn2<∞, ∑n=0∞αn=∞. We prove that the sequence {xn} strongly converges to x* if and only if there exists a strictly increasing function Φ:[0,∞)→[0,∞) with Φ(0)=0 such that limsup n→∞inf j(xn-x*)∈J(xn-x*){〈Txn-x*,j(xn-x*)〉-∥xn-x*∥2+Φ(∥xn-x*∥)}≤0.http://dx.doi.org/10.1155/2012/327878
spellingShingle Chang-He Xiang
Jiang-Hua Zhang
Zhe Chen
Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian Mappings
Journal of Applied Mathematics
title Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian Mappings
title_full Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian Mappings
title_fullStr Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian Mappings
title_full_unstemmed Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian Mappings
title_short Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian Mappings
title_sort necessary and sufficient condition for mann iteration converges to a fixed point of lipschitzian mappings
url http://dx.doi.org/10.1155/2012/327878
work_keys_str_mv AT changhexiang necessaryandsufficientconditionformanniterationconvergestoafixedpointoflipschitzianmappings
AT jianghuazhang necessaryandsufficientconditionformanniterationconvergestoafixedpointoflipschitzianmappings
AT zhechen necessaryandsufficientconditionformanniterationconvergestoafixedpointoflipschitzianmappings