Interactions between bacterial vaginosis-associated microbiota and Trichomonas vaginalis modulate parasite-induced pathogenicity and host immune responses

Abstract Background Trichomoniasis, caused by Trichomonas vaginalis (Tv), is the most common nonviral sexually transmitted infection (STI). Bacterial vaginosis (BV) is characterized by a reduction in health-associated Lactobacillus and an overgrowth of anaerobes. Both BV-associated bacteria (BVB) an...

Full description

Saved in:
Bibliographic Details
Main Authors: Shu-Fang Chiu, Ching-Yun Huang, Chien-Yung Chen, Wei-Jane Hsu, Yuan-Ming Yeh, Ya-Wen Shih, Lichieh Julie Chu, Wei-Ning Lin, Kuo-Yang Huang
Format: Article
Language:English
Published: BMC 2025-08-01
Series:Parasites & Vectors
Subjects:
Online Access:https://doi.org/10.1186/s13071-025-06996-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Trichomoniasis, caused by Trichomonas vaginalis (Tv), is the most common nonviral sexually transmitted infection (STI). Bacterial vaginosis (BV) is characterized by a reduction in health-associated Lactobacillus and an overgrowth of anaerobes. Both BV-associated bacteria (BVB) and Tv are linked to adverse gynecologic outcomes. Herein, we aimed to investigate whether interactions between vaginal bacterial species and Tv could modulate Tv pathogenicity and Tv-induced host immune responses. Methods We established a co-culture system to evaluate the interaction between Tv and various vaginal bacteria, including Lactobacillus crispatus, Escherichia coli, Prevotella bivia, and Lactobacillus iners, in the context of polymicrobial infection in ectocervical cells (Ect1). The impact of the interactions between Tv and these bacterial species on Tv adhesion, Tv-induced cytotoxicity in Ect1 cells, and cytokine secretion were assessed. Additionally, the molecular mechanisms governing host inflammation following Tv-bacteria interactions were investigated. Results Our in vitro model showed that specific BVB, particularly P. bivia, enhanced the expression of Tv ap65 gene and promoted Tv adhesion to host cells. Additionally, Tv pretreated with P. bivia increased cytotoxicity and upregulated IL-6, IL-8, CXCL1, and IP-10 secretion in Ect1 cells. Furthermore, Ect1 cells stimulated with Tv pretreated with P. bivia also activated the PI3K, ERK, and p38 MAPK pathways, triggering epithelial-mesenchymal transition (EMT) events. These results demonstrate that this potential pathobiont enhances Tv pathogenicity, highlighting the impact of the vaginal microbiome on host cells during Tv infection. Conclusions This study significantly advances our understanding of the complex host-bacteria-parasite interactions in the vaginal ecosystem. Graphical Abstract
ISSN:1756-3305