Investigation of Microstructural Damage in Ultrahigh-Performance Concrete under Freezing-Thawing Action
This work aims to investigate the damage in ultrahigh-performance concrete (UHPC) caused by freezing-thawing action. Freezing-thawing tests were carried out on UHPCs with and without steel fibers. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and X-ray computed tomography...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/3701682 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work aims to investigate the damage in ultrahigh-performance concrete (UHPC) caused by freezing-thawing action. Freezing-thawing tests were carried out on UHPCs with and without steel fibers. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and X-ray computed tomography (X-ray CT) were applied to detect the microstructure of the UHPC matrix before and after the freezing-thawing tests. The results showed that UHPC possessed very excellent freezing-thawing resistance due to its dense microstructure. After the freezing-thawing action, cracks occurred and were prone to initiate at the sand-paste interface in the UHPC matrix. MIP results also indicated that cracks appeared in the UHPC matrix after the freezing-thawing action. The number of defects that can be seen by X-ray CT increased in UHPC after the freezing-thawing action as well. The mismatch of the thermal expansion coefficients of the aggregate and the paste is considered to be the reason for the cracking at the sand-paste interface. The steel fibers in UHPC inhibited the propagation of cracks in the matrix and improved the freezing-thawing performance of UHPC. |
---|---|
ISSN: | 1687-8434 1687-8442 |