Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification

This paper presents a new, dictionary-based method for hyperspectral image classification, which incorporates both spectral and contextual characteristics of a sample clustered to obtain a dictionary of each pixel. The resulting pixels display a common sparsity pattern in identical clustered groups....

Full description

Saved in:
Bibliographic Details
Main Authors: Zhen-tao Qin, Wu-nian Yang, Ru Yang, Xiang-yu Zhao, Teng-jiao Yang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2015/678765
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548921590677504
author Zhen-tao Qin
Wu-nian Yang
Ru Yang
Xiang-yu Zhao
Teng-jiao Yang
author_facet Zhen-tao Qin
Wu-nian Yang
Ru Yang
Xiang-yu Zhao
Teng-jiao Yang
author_sort Zhen-tao Qin
collection DOAJ
description This paper presents a new, dictionary-based method for hyperspectral image classification, which incorporates both spectral and contextual characteristics of a sample clustered to obtain a dictionary of each pixel. The resulting pixels display a common sparsity pattern in identical clustered groups. We calculated the image’s sparse coefficients using the dictionary approach, which generated the sparse representation features of the remote sensing images. The sparse coefficients are then used to classify the hyperspectral images via a linear SVM. Experiments show that our proposed method of dictionary-based, clustered sparse coefficients can create better representations of hyperspectral images, with a greater overall accuracy and a Kappa coefficient.
format Article
id doaj-art-d12d56e8a124400eadb348584af83a07
institution Kabale University
issn 2314-4920
2314-4939
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Journal of Spectroscopy
spelling doaj-art-d12d56e8a124400eadb348584af83a072025-02-03T06:12:47ZengWileyJournal of Spectroscopy2314-49202314-49392015-01-01201510.1155/2015/678765678765Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image ClassificationZhen-tao Qin0Wu-nian Yang1Ru Yang2Xiang-yu Zhao3Teng-jiao Yang4Key Laboratory of Geo-Special Information Technology, Ministry of Land and Resources, Institute of Remote Sensing & GIS, Chengdu University of Technology, Chengdu, Sichuan 610059, ChinaKey Laboratory of Geo-Special Information Technology, Ministry of Land and Resources, Institute of Remote Sensing & GIS, Chengdu University of Technology, Chengdu, Sichuan 610059, ChinaPanzhihua College, Panzhihua, Sichuan 617000, ChinaPanzhihua College, Panzhihua, Sichuan 617000, ChinaPanzhihua College, Panzhihua, Sichuan 617000, ChinaThis paper presents a new, dictionary-based method for hyperspectral image classification, which incorporates both spectral and contextual characteristics of a sample clustered to obtain a dictionary of each pixel. The resulting pixels display a common sparsity pattern in identical clustered groups. We calculated the image’s sparse coefficients using the dictionary approach, which generated the sparse representation features of the remote sensing images. The sparse coefficients are then used to classify the hyperspectral images via a linear SVM. Experiments show that our proposed method of dictionary-based, clustered sparse coefficients can create better representations of hyperspectral images, with a greater overall accuracy and a Kappa coefficient.http://dx.doi.org/10.1155/2015/678765
spellingShingle Zhen-tao Qin
Wu-nian Yang
Ru Yang
Xiang-yu Zhao
Teng-jiao Yang
Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification
Journal of Spectroscopy
title Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification
title_full Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification
title_fullStr Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification
title_full_unstemmed Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification
title_short Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification
title_sort dictionary based clustered sparse representation for hyperspectral image classification
url http://dx.doi.org/10.1155/2015/678765
work_keys_str_mv AT zhentaoqin dictionarybasedclusteredsparserepresentationforhyperspectralimageclassification
AT wunianyang dictionarybasedclusteredsparserepresentationforhyperspectralimageclassification
AT ruyang dictionarybasedclusteredsparserepresentationforhyperspectralimageclassification
AT xiangyuzhao dictionarybasedclusteredsparserepresentationforhyperspectralimageclassification
AT tengjiaoyang dictionarybasedclusteredsparserepresentationforhyperspectralimageclassification