Modulatory Function of Invariant Natural Killer T Cells in Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical manifestations. Multiple organ failure in SLE can be caused by immune dysfunction and deposition of autoantibodies. Studies of SLE-susceptible loci and the cellular and humoral imm...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi-Ping Chuang, Chih-Hung Wang, Ning-Chi Wang, Deh-Ming Chang, Huey-Kang Sytwu
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Clinical and Developmental Immunology
Online Access:http://dx.doi.org/10.1155/2012/478429
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical manifestations. Multiple organ failure in SLE can be caused by immune dysfunction and deposition of autoantibodies. Studies of SLE-susceptible loci and the cellular and humoral immune responses reveal variable aberrations associated with this systemic disease. Invariant natural killer T (iNKT) cells are a unique subset of lymphocytes that control peripheral tolerance. Mounting evidence showing reductions in the proportion and activity of iNKT cells in SLE patients suggests the suppressive role of iNKT cells. Studies using murine lupus models demonstrate that iNKT cells participate in SLE progression by sensing apoptotic cells, regulating immunoglobulin production, and altering the cytokine profile upon activation. However, the dichotomy of iNKT cell actions in murine models implies complicated interactions within the body's milieu. Therefore, application of potential therapy for SLE using glycolipids to regulate iNKT cells should be undertaken cautiously.
ISSN:1740-2522
1740-2530