Navigating Challenges and Harnessing Opportunities: Deep Learning Applications in Internet of Medical Things

Integrating deep learning (DL) with the Internet of Medical Things (IoMT) is a paradigm shift in modern healthcare, offering enormous opportunities for patient care, diagnostics, and treatment. Implementing DL with IoMT has the potential to deliver better diagnosis, treatment, and patient management...

Full description

Saved in:
Bibliographic Details
Main Authors: John Mulo, Hengshuo Liang, Mian Qian, Milon Biswas, Bharat Rawal, Yifan Guo, Wei Yu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Future Internet
Subjects:
Online Access:https://www.mdpi.com/1999-5903/17/3/107
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Integrating deep learning (DL) with the Internet of Medical Things (IoMT) is a paradigm shift in modern healthcare, offering enormous opportunities for patient care, diagnostics, and treatment. Implementing DL with IoMT has the potential to deliver better diagnosis, treatment, and patient management. However, the practical implementation has challenges, including data quality, privacy, interoperability, and limited computational resources. This survey article provides a conceptual IoMT framework for healthcare, synthesizes and identifies the state-of-the-art solutions that tackle the challenges of the current applications of DL, and analyzes existing limitations and potential future developments. Through an analysis of case studies and real-world implementations, this work provides insights into best practices and lessons learned, including the importance of robust data preprocessing, integration with legacy systems, and human-centric design. Finally, we outline future research directions, emphasizing the development of transparent, scalable, and privacy-preserving DL models to realize the full potential of IoMT in healthcare. This survey aims to serve as a foundational reference for researchers and practitioners seeking to navigate the challenges and harness the opportunities in this rapidly evolving field.
ISSN:1999-5903