Two Nonmonotonic Self-Adaptive Strongly Convergent Projection-Type Methods for Solving Pseudomonotone Variational Inequalities
The primary objective of this study is to introduce two novel extragradient-type iterative schemes for solving variational inequality problems in a real Hilbert space. The proposed iterative schemes extend the well-known subgradient extragradient method and are used to solve variational inequalities...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-01-01
|
| Series: | Journal of Function Spaces |
| Online Access: | http://dx.doi.org/10.1155/2021/8327694 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The primary objective of this study is to introduce two novel extragradient-type iterative schemes for solving variational inequality problems in a real Hilbert space. The proposed iterative schemes extend the well-known subgradient extragradient method and are used to solve variational inequalities involving the pseudomonotone operator in real Hilbert spaces. The proposed iterative methods have the primary advantage of using a simple mathematical formula for step size rule based on operator information rather than the Lipschitz constant or another line search method. Strong convergence results for the suggested iterative algorithms are well-established for mild conditions, such as Lipschitz continuity and mapping monotonicity. Finally, we present many numerical experiments that show the effectiveness and superiority of iterative methods. |
|---|---|
| ISSN: | 2314-8888 |