A Modular and Scalable Approach to Hybrid Battery and Converter Integration for Full-Electric Waterborne Transport

This paper presents a flexible and scalable battery system for maritime transportation, integrating modular converters and hybrid battery technologies that are effectively implemented in real-world scenarios. The proposed system is realized with modular DC-DC converters, which do not require complex...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramon Lopez-Erauskin, Argiñe Alacano, Aitor Lizeaga, Giuseppe Guidi, Olve Mo, Amaia Lopez-de-Heredia, Mikel Alzuri
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/1/120
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a flexible and scalable battery system for maritime transportation, integrating modular converters and hybrid battery technologies that are effectively implemented in real-world scenarios. The proposed system is realized with modular DC-DC converters, which do not require complex design and control or a high number of components and combine high-power (HP) and high-energy (HE) battery cells to optimize the energy and power requirements of vessel operations without oversizing the energy storage system. Moreover, the modular design ensures flexibility and scalability, allowing for easy adaptation to varying operational demands. In particular, the system topology, control mechanisms, and communication protocols are explained in this paper. The concept has been validated through simulations and real-scale laboratory tests, demonstrating its effectiveness. Key results highlight the system’s ability to maintain the DC bus voltage while operating at high efficiency (ranging from 97% to 98%) under different load conditions, supported by reliable and demanding real-time communication using the EtherCAT standard. This real-time capability has been validated, and related results are presented in this paper, showing a synchronization accuracy below 200 ns between two modules and a stable control at a cycle time of 400 µs. This approach offers a promising solution for reducing greenhouse gas emissions in the maritime industry, aligning with global sustainability goals.
ISSN:2077-1312