Iterative Algorithms for New General Systems of Set-Valued Variational Inclusions Involving (A,η)-Maximal Relaxed Monotone Operators
We introduce and study a class of new general systems of set-valued variational inclusions involving (A,η)-maximal relaxed monotone operators in Hilbert spaces. By using the general resolvent operator technique associated with (A,η)-maximal relaxed monotone operators, we construct some new iterative...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2014/698593 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce and study a class of new general systems of set-valued variational inclusions involving (A,η)-maximal relaxed monotone operators in Hilbert spaces. By using the general resolvent operator technique associated with (A,η)-maximal relaxed monotone operators, we construct some new iterative algorithms for finding approximation solutions to the general system of set-valued variational inclusion problem and prove the convergence of this algorithm. Our results improve and extend some known results. |
---|---|
ISSN: | 1110-757X 1687-0042 |