Efficient Incorporation of DOPA into Proteins Free from Competition with Endogenous Translation Termination Machinery

3,4-Dihydroxy-L-phenylalanine (DOPA) is a promising noncanonical amino acid (ncAA) that introduces novel catechol chemical features into proteins, expanding their functional potential. However, the most common approach to incorporating ncAAs into proteins relies on stop codon suppression, which is o...

Full description

Saved in:
Bibliographic Details
Main Authors: Youhui Yang, Yingchen Wang, Zhaoguan Wang, Hao Qi
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/3/382
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3,4-Dihydroxy-L-phenylalanine (DOPA) is a promising noncanonical amino acid (ncAA) that introduces novel catechol chemical features into proteins, expanding their functional potential. However, the most common approach to incorporating ncAAs into proteins relies on stop codon suppression, which is often limited by the competition of endogenous translational termination machinery. Here, we employed a special in vitro protein expression system that facilitates the efficiency of DOPA incorporation into proteins by removing essential Class I peptide release factors through targeted degradation. In the absence of both RF1 and RF2, we successfully demonstrated DOPA incorporation at all three stop codons (TAG, TAA, and TGA). By optimizing the concentration of engineered DOPA-specific aminoacyl-tRNA synthetase (DOPARS), DOPA, and DNA template, we achieved a synthesis yield of 2.24 µg of sfGFP with 100% DOPA incorporation in a 20 μL reaction system. DOPARS exhibited a dissociation constant (<i>Kd</i>) of 11.7 μM for DOPA but showed no detectable binding to its native counterpart, tyrosine. Additionally, DOPA was successfully incorporated into a reverse transcriptase, which interfered with its activity. This system demonstrates a fast and efficient approach for precise DOPA incorporation into proteins, paving the way for advanced protein engineering applications.
ISSN:2218-273X