miR-361-5p contributes to the pathogenesis of Alzheimer’s disease

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. This study investigated the roles of HOMER1, ATAD1, and miR-361 in AD pathogenesis using microarray (GSE106241, GSE157239; n = 60) and RT-PCR (n = 100; 50 AD patients, 50 controls from Northwest Iran) analyses. Decreased...

Full description

Saved in:
Bibliographic Details
Main Authors: Abbas Jalaiei, Jalal Gharesouran, Shahram Arsang-Jang, Mahnaz Talebi, Maryam Rezazadeh, Soudeh Ghafouri-Fard
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-17112-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. This study investigated the roles of HOMER1, ATAD1, and miR-361 in AD pathogenesis using microarray (GSE106241, GSE157239; n = 60) and RT-PCR (n = 100; 50 AD patients, 50 controls from Northwest Iran) analyses. Decreased expression of HOMER1 and ATAD1, key regulators of glutamatergic synapses, and miR-361, a potential regulator of both, was observed in AD brain tissue (GSE106241, categorized into seven Braak stages), suggesting a link between their dysregulation, impaired synaptic function, and increased neuroinflammation. However, blood-based RT-PCR showed no significant difference in HOMER1 or ATAD1. miR-361 was significantly lower in AD patients (adjusted p < 0.043). These findings, limited by sample size and lacking a formal power analysis, require further investigation to validate their potential as peripheral biomarkers for AD. Future studies with larger sample sizes are warranted.
ISSN:2045-2322