A Note about Young’s Inequality with Different Measures
The key purpose of this paper is to work on the boundedness of generalized Bessel–Riesz operators defined with doubling measures in Lebesgue spaces with different measures. Relating Bessel decaying the kernel of the operators is satisfying some elementary properties. Doubling measure, Young's i...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2022/4672957 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The key purpose of this paper is to work on the boundedness of generalized Bessel–Riesz operators defined with doubling measures in Lebesgue spaces with different measures. Relating Bessel decaying the kernel of the operators is satisfying some elementary properties. Doubling measure, Young's inequality, and Minköwski’s inequality will be used in proofs of boundedness of integral operators. In addition, we also explore the relation between the parameters of the kernel and generalized integral operators and see the norm of these generalized operators which will also be bounded by the norm of their kernel with different measures. |
---|---|
ISSN: | 1687-0425 |