Black Holes Have More States than Those Defined by the Bekenstein–Hawking Entropy: A Simple Argument
It is often assumed that the maximum number of independent states a black hole may contain is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>B</m...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Universe |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1997/11/1/6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is often assumed that the maximum number of independent states a black hole may contain is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>=</mo><msup><mi>e</mi><msub><mi>S</mi><mrow><mi>B</mi><mi>H</mi></mrow></msub></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>=</mo><mi>A</mi><mo>/</mo><mn>4</mn></mrow></semantics></math></inline-formula> is the Bekenstein–Hawking entropy and <i>A</i> is the horizon area in Planck units. I present a simple and straightforward argument showing that the number of states that can be distinguished by local observers inside the hole must be greater than this number. |
---|---|
ISSN: | 2218-1997 |