Between-strain differences in hypothermic response in mice after intranasal administration of PtO nanoparticles

Air pollution by particulate matter (PM) has been associated with cardiopulmonary morbidity and mortality in many recent epidemiological studies. It has been shown that transition metal compounds, well- known toxic components of PM, are able to induce hypothermia following whole-body inhalation expo...

Full description

Saved in:
Bibliographic Details
Main Authors: D. V. Petrovskii, A. V. Romashchenko, S. Yu. Troitskii, M. P. Moshkin
Format: Article
Language:English
Published: Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders 2015-12-01
Series:Вавиловский журнал генетики и селекции
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/433
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Air pollution by particulate matter (PM) has been associated with cardiopulmonary morbidity and mortality in many recent epidemiological studies. It has been shown that transition metal compounds, well- known toxic components of PM, are able to induce hypothermia following whole-body inhalation exposure. Low temperature appears to protect tissue against toxic effects of PM metal compounds in vivo and in vitro. To study the role of soluble and insoluble irritants in the induction of the hypothermic response, we analyz­ed the decrease in mouse body temperature (Δtbody) after intranasal administration of PtO nanoparticles or a K2[PtCl 4] solution. Between-strain differences in Δtbody after intranasal administration of the irritants were evaluated using 6 inbred (BALB/cJ, C57BL/6J, AKR/OlaHsd, DBA/2JRccHsd, C3H/HeNHsd, and SJL/J) and 2 outbred mouse strains (SCID and CD1). BALB/cJ and SCID mice showed the most pronounced effect of intranasal admini­stration of the xenobiotic on tbody. Thus, tbody was signi­ficantly lower after nasal administration the PtO nano­particles than after administration of the K2[PtCl 4] solution. To study the mechanism of this decrease, we compar­ed the respective values for Δtbody following intra­nasal, intravenous and peroral administration of PtO nanoparticles in Balb/c mice. Neither intravenous nor peroral administration had any effect on mouse body temperature. This fact together with data on the dynamics of the decrease in mouse body temperature following intranasal administration of PtO nanoparticles (max Δtbody ~ 80–100 min) allowed us to assume that this process is under nervous regulation. The correlation found between our data and some well-known phenotypic characteristics (phenome.jax.org) of the mouse strains used confirms this hypothesis.
ISSN:2500-3259