Scalable high-efficiency metasurface-refractive retro-reflector

Abstract A retroreflector, an optical device that reflects light back along its incident path, plays a crucial role in optics. However, achieving high-efficiency, large-area retroreflection in planar optical systems remains a persistent challenge, constrained by the bulky nature of traditional desig...

Full description

Saved in:
Bibliographic Details
Main Authors: Quan Yuan, Qin Ge, Xiujuan Zou, Yi Zhang, Yuhang Yang, Boyan Fu, Ruoyu Lin, Boping He, Shuming Wang, Din Ping Tsai, Shining Zhu, Zhenlin Wang
Format: Article
Language:English
Published: SpringerOpen 2025-05-01
Series:PhotoniX
Online Access:https://doi.org/10.1186/s43074-025-00172-9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A retroreflector, an optical device that reflects light back along its incident path, plays a crucial role in optics. However, achieving high-efficiency, large-area retroreflection in planar optical systems remains a persistent challenge, constrained by the bulky nature of traditional designs like corner cube mirrors and cat’s eye retroreflectors. Here, we demonstrate a scalable metasurface-refractive retroreflector (MRR) that combines a refractive lens and meta-lens, achieving polarization-independent retroreflection with a half power field of view (FOV) of 70° and 88.5% efficiency at normal incident. The scalability of the MRR enables straightforward planar expansion into arrays, facilitating large-area effective retroreflection. Additionally, a moving object equipped with MRR is observed in a laser tracking experiment. The metasurface-refractive architecture evidently improves the functionality of the retroreflector, and paves a new path in the field of smart optical device design.
ISSN:2662-1991