Superelliptic Affine Lie algebras and orthogonal polynomials
We construct two families of orthogonal polynomials associated with the universal central extensions of the superelliptic Lie algebras. These polynomials satisfy certain fourth-order linear differential equations, and one of the families is a particular collection of associated ultraspherical polyno...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Cambridge University Press
2025-01-01
|
| Series: | Forum of Mathematics, Sigma |
| Subjects: | |
| Online Access: | https://www.cambridge.org/core/product/identifier/S2050509425100741/type/journal_article |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We construct two families of orthogonal polynomials associated with the universal central extensions of the superelliptic Lie algebras. These polynomials satisfy certain fourth-order linear differential equations, and one of the families is a particular collection of associated ultraspherical polynomials. We show that the generating functions of the polynomials satisfy fourth-order linear PDEs. Since these generating functions can be represented by superelliptic integrals, we have examples of linear PDEs of fourth order with explicit solutions without complete integrability. |
|---|---|
| ISSN: | 2050-5094 |