Electrophysical characteristics of polyurethane/organo-bentonite nanocomposites
Modification of the Egyptian Bentonite (EB) was carried out using organo-modifier namely; octadecylamine ODA. Before the modification, the cation exchange capacity (CEC) of the EB was measured, also it was purified from different impurities using HCl and distilled water. The Organo-bentonite OB was...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Egyptian Petroleum Research Institute
2014-12-01
|
| Series: | Egyptian Journal of Petroleum |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S1110062114000646 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Modification of the Egyptian Bentonite (EB) was carried out using organo-modifier namely; octadecylamine ODA. Before the modification, the cation exchange capacity (CEC) of the EB was measured, also it was purified from different impurities using HCl and distilled water. The Organo-bentonite OB was characterized using IR, XRD, and TEM. PU/ODA-B nanocomposites were prepared by in situ polymerization then characterized by XRD and TEM. An amount of ODA-B ranging from 0.25% up to 5% by weight was added to the polyol component of the resin before mixing with toluene diisocynate TDI. TEM showed that the nanocomposites achieved good dispersion in the polyurethane matrix. The mechanical, swelling and electrical properties of the nanocomposites were measured. The results indicate that the tensile strength of all the nanocomposites enhanced with the addition of OB compared with the pure PU. The crosslink density of the nanocomposites increases with increasing the content of OB. The Pool–Frenckel conduction mechanism predominates for all the nanocomposite samples and the blank one. |
|---|---|
| ISSN: | 1110-0621 |