On Simultaneous Farthest Points in ๐ฟโ(๐ผ,๐)
Let ๐ be a Banach space and let ๐บ be a closed bounded subset of ๐. For (๐ฅ1,๐ฅ2,โฆ,๐ฅ๐)โ๐๐, we setโโ๐(๐ฅ1,๐ฅ2,โฆ,๐ฅ๐,๐บ)=sup{max1โค๐โค๐โ๐ฅ๐โ๐ฆโโถ๐ฆโ๐บ}. The set ๐บ is called simultaneously remotal if, for any (๐ฅ1,๐ฅ2,โฆ,๐ฅ๐)โ๐๐, there exists ๐โ๐บ such thatโโ๐(๐ฅ1,๐ฅ2,โฆ,๐ฅ๐,๐บ)=max1โค๐โค๐โ๐ฅ๐โ๐โ. In this paper, we show that if...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2011/890598 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554813396615168 |
---|---|
author | Sh. Al-Sharif M. Rawashdeh |
author_facet | Sh. Al-Sharif M. Rawashdeh |
author_sort | Sh. Al-Sharif |
collection | DOAJ |
description | Let ๐ be a Banach space and let ๐บ be a closed bounded subset of ๐. For (๐ฅ1,๐ฅ2,โฆ,๐ฅ๐)โ๐๐, we setโโ๐(๐ฅ1,๐ฅ2,โฆ,๐ฅ๐,๐บ)=sup{max1โค๐โค๐โ๐ฅ๐โ๐ฆโโถ๐ฆโ๐บ}. The set ๐บ is called simultaneously remotal if, for any (๐ฅ1,๐ฅ2,โฆ,๐ฅ๐)โ๐๐, there exists ๐โ๐บ such thatโโ๐(๐ฅ1,๐ฅ2,โฆ,๐ฅ๐,๐บ)=max1โค๐โค๐โ๐ฅ๐โ๐โ. In this paper, we show that if ๐บ is separable simultaneously remotal in ๐, then the set of โ-Bochner integrable functions, ๐ฟโ(๐ผ,๐บ), is simultaneously remotal in ๐ฟโ(๐ผ,๐). Some other results are presented. |
format | Article |
id | doaj-art-cd230dc403224623b5caef6995ded341 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2011-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-cd230dc403224623b5caef6995ded3412025-02-03T05:50:29ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252011-01-01201110.1155/2011/890598890598On Simultaneous Farthest Points in ๐ฟโ(๐ผ,๐)Sh. Al-Sharif0M. Rawashdeh1Mathematics Department, Yarmouk University, Irbid 21163, JordanDepartment of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, JordanLet ๐ be a Banach space and let ๐บ be a closed bounded subset of ๐. For (๐ฅ1,๐ฅ2,โฆ,๐ฅ๐)โ๐๐, we setโโ๐(๐ฅ1,๐ฅ2,โฆ,๐ฅ๐,๐บ)=sup{max1โค๐โค๐โ๐ฅ๐โ๐ฆโโถ๐ฆโ๐บ}. The set ๐บ is called simultaneously remotal if, for any (๐ฅ1,๐ฅ2,โฆ,๐ฅ๐)โ๐๐, there exists ๐โ๐บ such thatโโ๐(๐ฅ1,๐ฅ2,โฆ,๐ฅ๐,๐บ)=max1โค๐โค๐โ๐ฅ๐โ๐โ. In this paper, we show that if ๐บ is separable simultaneously remotal in ๐, then the set of โ-Bochner integrable functions, ๐ฟโ(๐ผ,๐บ), is simultaneously remotal in ๐ฟโ(๐ผ,๐). Some other results are presented.http://dx.doi.org/10.1155/2011/890598 |
spellingShingle | Sh. Al-Sharif M. Rawashdeh On Simultaneous Farthest Points in ๐ฟโ(๐ผ,๐) International Journal of Mathematics and Mathematical Sciences |
title | On Simultaneous Farthest Points in ๐ฟโ(๐ผ,๐) |
title_full | On Simultaneous Farthest Points in ๐ฟโ(๐ผ,๐) |
title_fullStr | On Simultaneous Farthest Points in ๐ฟโ(๐ผ,๐) |
title_full_unstemmed | On Simultaneous Farthest Points in ๐ฟโ(๐ผ,๐) |
title_short | On Simultaneous Farthest Points in ๐ฟโ(๐ผ,๐) |
title_sort | on simultaneous farthest points in ๐ฟโ ๐ผ ๐ |
url | http://dx.doi.org/10.1155/2011/890598 |
work_keys_str_mv | AT shalsharif onsimultaneousfarthestpointsinlix AT mrawashdeh onsimultaneousfarthestpointsinlix |