On Simultaneous Farthest Points in ๐ฟโˆž(๐ผ,๐‘‹)

Let ๐‘‹ be a Banach space and let ๐บ be a closed bounded subset of ๐‘‹. For (๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘š)โˆˆ๐‘‹๐‘š, we setโ€‰โ€‰๐œŒ(๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘š,๐บ)=sup{max1โ‰ค๐‘–โ‰ค๐‘šโ€–๐‘ฅ๐‘–โˆ’๐‘ฆโ€–โˆถ๐‘ฆโˆˆ๐บ}. The set ๐บ is called simultaneously remotal if, for any (๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘š)โˆˆ๐‘‹๐‘š, there exists ๐‘”โˆˆ๐บ such thatโ€‰โ€‰๐œŒ(๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘š,๐บ)=max1โ‰ค๐‘–โ‰ค๐‘šโ€–๐‘ฅ๐‘–โˆ’๐‘”โ€–. In this paper, we show that if...

Full description

Saved in:
Bibliographic Details
Main Authors: Sh. Al-Sharif, M. Rawashdeh
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2011/890598
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let ๐‘‹ be a Banach space and let ๐บ be a closed bounded subset of ๐‘‹. For (๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘š)โˆˆ๐‘‹๐‘š, we setโ€‰โ€‰๐œŒ(๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘š,๐บ)=sup{max1โ‰ค๐‘–โ‰ค๐‘šโ€–๐‘ฅ๐‘–โˆ’๐‘ฆโ€–โˆถ๐‘ฆโˆˆ๐บ}. The set ๐บ is called simultaneously remotal if, for any (๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘š)โˆˆ๐‘‹๐‘š, there exists ๐‘”โˆˆ๐บ such thatโ€‰โ€‰๐œŒ(๐‘ฅ1,๐‘ฅ2,โ€ฆ,๐‘ฅ๐‘š,๐บ)=max1โ‰ค๐‘–โ‰ค๐‘šโ€–๐‘ฅ๐‘–โˆ’๐‘”โ€–. In this paper, we show that if ๐บ is separable simultaneously remotal in ๐‘‹, then the set of โˆž-Bochner integrable functions, ๐ฟโˆž(๐ผ,๐บ), is simultaneously remotal in ๐ฟโˆž(๐ผ,๐‘‹). Some other results are presented.
ISSN:0161-1712
1687-0425