An Efficient Position Tracking Smoothing Algorithm for Sensorless Operation of Brushless DC Motor Drives
This paper presents a new position sensorless scheme in which a smoothing filter algorithm is proposed to improve the results obtained through Extended Kalman Filter (EKF) algorithm in tracking the rotor position for sensorless control of brushless DC motors. The rotor position and speed are estimat...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Modelling and Simulation in Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/4523416 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a new position sensorless scheme in which a smoothing filter algorithm is proposed to improve the results obtained through Extended Kalman Filter (EKF) algorithm in tracking the rotor position for sensorless control of brushless DC motors. The rotor position and speed are estimated from the input voltage and current using the Extended Kalman Filter. States obtained through filtering in each sampling instant are refined, using the new smoothing algorithm, giving much better results. In the proposed method, the estimated state in previous instant is enhanced using the present measurement sample by the smoothing algorithm which is then used to improve the present estimated state variables. The complete system is modelled and simulated in MATLAB to verify the merit of the proposed smoothing algorithm. A comparison with conventional EKF is done for various load torque and speed conditions to establish the performance of the new sensorless algorithm. Simulation results show that the proposed smoothing technique offers better estimation accuracy. The peak error in the estimated speed and rotor position is considerably reduced when compared with EKF. The improved state estimate can be used as feedback for speed control of brushless DC motors in variable speed drives. |
---|---|
ISSN: | 1687-5591 1687-5605 |