Bilateral Harnack Inequalities for Stochastic Differential Equation with Multiplicative Noise

By constructing a coupling with unbounded time-dependent drift, a lower bound estimate of dimension-free Harnack inequality with power is obtained for a large class of stochastic differential equation with multiplicative noise. The key is an application of the inverse Hölder inequality. Combining th...

Full description

Saved in:
Bibliographic Details
Main Authors: Zihao An, Gaofeng Zong
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2022/5464688
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By constructing a coupling with unbounded time-dependent drift, a lower bound estimate of dimension-free Harnack inequality with power is obtained for a large class of stochastic differential equation with multiplicative noise. The key is an application of the inverse Hölder inequality. Combining this with the well-known upper bound, bilateral dimension-free Harnack inequality with power is established. As a dual inequality, the bilateral shift-Harnack inequalities with power are also investigated for stochastic differential equation with additive noise. Applications to the study of heat kernel inequalities are provided to illustrate the obtained inequalities.
ISSN:2314-8888