Imputation of missing land carbon sequestration data in the AR6 Scenarios Database

<p>The AR6 Scenarios Database is a vital repository of climate change mitigation pathways used in the latest Intergovernmental Panel on Climate Change (IPCC) assessment cycle. In its current version, many scenarios in the database lack information about the level of anthropogenic carbon dioxid...

Full description

Saved in:
Bibliographic Details
Main Authors: R. Prütz, S. Fuss, J. Rogelj
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/17/221/2025/essd-17-221-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832584957227171840
author R. Prütz
R. Prütz
R. Prütz
R. Prütz
S. Fuss
S. Fuss
S. Fuss
J. Rogelj
J. Rogelj
J. Rogelj
author_facet R. Prütz
R. Prütz
R. Prütz
R. Prütz
S. Fuss
S. Fuss
S. Fuss
J. Rogelj
J. Rogelj
J. Rogelj
author_sort R. Prütz
collection DOAJ
description <p>The AR6 Scenarios Database is a vital repository of climate change mitigation pathways used in the latest Intergovernmental Panel on Climate Change (IPCC) assessment cycle. In its current version, many scenarios in the database lack information about the level of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) removal via land sinks, as net-negative CO<span class="inline-formula"><sub>2</sub></span> emissions and gross removals on land are not always separated and are not consistently reported across models. This makes scenario analyses focusing on CO<span class="inline-formula"><sub>2</sub></span> removal challenging. We test and compare the performance of different regression models to impute missing data on land carbon sequestration for the global level and for several sub-global macro-regions from available data on net CO<span class="inline-formula"><sub>2</sub></span> emissions from agriculture, forestry, and other land uses. We find that a <span class="inline-formula"><i>k</i></span>-nearest neighbors regression performs best among the tested regression models and use it to impute and provide two publicly available imputation datasets (<a href="https://doi.org/10.5281/zenodo.13373539">https://doi.org/10.5281/zenodo.13373539</a>, Prütz et al., 2024) on CO<span class="inline-formula"><sub>2</sub></span> removal via land sinks for incomplete global scenarios (<span class="inline-formula"><i>n</i>=404</span>) and incomplete regional R10 scenario variants (<span class="inline-formula"><i>n</i>=2358</span>) of the AR6 Scenarios Database. We discuss the limitations of our approach, the use of our datasets for secondary assessments of AR6 scenario ensembles, and how this approach compares to other recent AR6 data reanalyses.</p>
format Article
id doaj-art-ccd37f5d62324af483603fab23dfc14d
institution Kabale University
issn 1866-3508
1866-3516
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Earth System Science Data
spelling doaj-art-ccd37f5d62324af483603fab23dfc14d2025-01-27T07:51:10ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162025-01-011722123110.5194/essd-17-221-2025Imputation of missing land carbon sequestration data in the AR6 Scenarios DatabaseR. Prütz0R. Prütz1R. Prütz2R. Prütz3S. Fuss4S. Fuss5S. Fuss6J. Rogelj7J. Rogelj8J. Rogelj9Geography Department, Humboldt-Universität zu Berlin, Berlin, GermanyMercator Research Institute on Global Commons and Climate Change (MCC), Berlin, GermanyGrantham Institute for Climate Change and the Environment, Imperial College London, London, United KingdomPotsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, GermanyGeography Department, Humboldt-Universität zu Berlin, Berlin, GermanyMercator Research Institute on Global Commons and Climate Change (MCC), Berlin, GermanyPotsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, GermanyGrantham Institute for Climate Change and the Environment, Imperial College London, London, United KingdomCentre for Environmental Policy, Imperial College London, London, United KingdomEnergy, Climate and Environment Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria<p>The AR6 Scenarios Database is a vital repository of climate change mitigation pathways used in the latest Intergovernmental Panel on Climate Change (IPCC) assessment cycle. In its current version, many scenarios in the database lack information about the level of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) removal via land sinks, as net-negative CO<span class="inline-formula"><sub>2</sub></span> emissions and gross removals on land are not always separated and are not consistently reported across models. This makes scenario analyses focusing on CO<span class="inline-formula"><sub>2</sub></span> removal challenging. We test and compare the performance of different regression models to impute missing data on land carbon sequestration for the global level and for several sub-global macro-regions from available data on net CO<span class="inline-formula"><sub>2</sub></span> emissions from agriculture, forestry, and other land uses. We find that a <span class="inline-formula"><i>k</i></span>-nearest neighbors regression performs best among the tested regression models and use it to impute and provide two publicly available imputation datasets (<a href="https://doi.org/10.5281/zenodo.13373539">https://doi.org/10.5281/zenodo.13373539</a>, Prütz et al., 2024) on CO<span class="inline-formula"><sub>2</sub></span> removal via land sinks for incomplete global scenarios (<span class="inline-formula"><i>n</i>=404</span>) and incomplete regional R10 scenario variants (<span class="inline-formula"><i>n</i>=2358</span>) of the AR6 Scenarios Database. We discuss the limitations of our approach, the use of our datasets for secondary assessments of AR6 scenario ensembles, and how this approach compares to other recent AR6 data reanalyses.</p>https://essd.copernicus.org/articles/17/221/2025/essd-17-221-2025.pdf
spellingShingle R. Prütz
R. Prütz
R. Prütz
R. Prütz
S. Fuss
S. Fuss
S. Fuss
J. Rogelj
J. Rogelj
J. Rogelj
Imputation of missing land carbon sequestration data in the AR6 Scenarios Database
Earth System Science Data
title Imputation of missing land carbon sequestration data in the AR6 Scenarios Database
title_full Imputation of missing land carbon sequestration data in the AR6 Scenarios Database
title_fullStr Imputation of missing land carbon sequestration data in the AR6 Scenarios Database
title_full_unstemmed Imputation of missing land carbon sequestration data in the AR6 Scenarios Database
title_short Imputation of missing land carbon sequestration data in the AR6 Scenarios Database
title_sort imputation of missing land carbon sequestration data in the ar6 scenarios database
url https://essd.copernicus.org/articles/17/221/2025/essd-17-221-2025.pdf
work_keys_str_mv AT rprutz imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT rprutz imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT rprutz imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT rprutz imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT sfuss imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT sfuss imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT sfuss imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT jrogelj imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT jrogelj imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase
AT jrogelj imputationofmissinglandcarbonsequestrationdatainthear6scenariosdatabase