Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces

Fixed point theorems for generalized Lipschitzian semigroups are proved in p-uniformly convex Banach spaces and in uniformly convex Banach spaces. As applications, its corollaries are given in a Hilbert space, in Lp spaces, in Hardy space Hp, and in Sobolev spaces Hk,p, for 1<p<∞ and k≥0.

Saved in:
Bibliographic Details
Main Authors: Balwant Singh Thakur, Jong Soo Jung
Format: Article
Language:English
Published: Wiley 1999-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171299221199
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545881110347776
author Balwant Singh Thakur
Jong Soo Jung
author_facet Balwant Singh Thakur
Jong Soo Jung
author_sort Balwant Singh Thakur
collection DOAJ
description Fixed point theorems for generalized Lipschitzian semigroups are proved in p-uniformly convex Banach spaces and in uniformly convex Banach spaces. As applications, its corollaries are given in a Hilbert space, in Lp spaces, in Hardy space Hp, and in Sobolev spaces Hk,p, for 1<p<∞ and k≥0.
format Article
id doaj-art-cc413f41c97848748d0441522963fd11
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1999-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-cc413f41c97848748d0441522963fd112025-02-03T07:24:37ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251999-01-0122111912910.1155/S0161171299221199Fixed point theorems for generalized Lipschitzian semigroups in Banach spacesBalwant Singh Thakur0Jong Soo Jung1Govt. B. H. S. S. Gariaband, Dist. Raipur, M. P. 493889, IndiaDepartment of Mathematics, Dong-A University, Pusan 604–714, KoreaFixed point theorems for generalized Lipschitzian semigroups are proved in p-uniformly convex Banach spaces and in uniformly convex Banach spaces. As applications, its corollaries are given in a Hilbert space, in Lp spaces, in Hardy space Hp, and in Sobolev spaces Hk,p, for 1<p<∞ and k≥0.http://dx.doi.org/10.1155/S0161171299221199Semitopological semigroupsubmeangeneralized Lipschitzian semigroupp-uniformly convex Banach spaceuniformly normal structure.
spellingShingle Balwant Singh Thakur
Jong Soo Jung
Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces
International Journal of Mathematics and Mathematical Sciences
Semitopological semigroup
submean
generalized Lipschitzian semigroup
p-uniformly convex Banach space
uniformly normal structure.
title Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces
title_full Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces
title_fullStr Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces
title_full_unstemmed Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces
title_short Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces
title_sort fixed point theorems for generalized lipschitzian semigroups in banach spaces
topic Semitopological semigroup
submean
generalized Lipschitzian semigroup
p-uniformly convex Banach space
uniformly normal structure.
url http://dx.doi.org/10.1155/S0161171299221199
work_keys_str_mv AT balwantsinghthakur fixedpointtheoremsforgeneralizedlipschitziansemigroupsinbanachspaces
AT jongsoojung fixedpointtheoremsforgeneralizedlipschitziansemigroupsinbanachspaces