Approximate Analytical Solution for Nonlinear System of Fractional Differential Equations by BPs Operational Matrices
We present two methods for solving a nonlinear system of fractional differential equations within Caputo derivative. Firstly, we derive operational matrices for Caputo fractional derivative and for Riemann-Liouville fractional integral by using the Bernstein polynomials (BPs). In the first method, w...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2013/954015 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present two methods for solving a nonlinear system of fractional differential equations within Caputo derivative. Firstly, we derive operational matrices for Caputo fractional derivative and for Riemann-Liouville fractional integral by using the Bernstein polynomials (BPs). In the first method, we use the operational matrix of Caputo fractional derivative (OMCFD), and in the second one, we apply the operational matrix of Riemann-Liouville fractional integral (OMRLFI). The obtained results are in good agreement with each other as well as with the analytical solutions. We show that the solutions approach to classical solutions as the order of the fractional derivatives approaches 1. |
---|---|
ISSN: | 1687-9120 1687-9139 |