Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions

The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to...

Full description

Saved in:
Bibliographic Details
Main Authors: Alvaro A. Rodriguez, Joseph H. Tylczak, Michael C. Gao, Paul D. Jablonski, Martin Detrois, Margaret Ziomek-Moroz, Jeffrey A. Hawk
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2018/3016304
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pitting corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi2Mo0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi2 and stainless steel 316L.
ISSN:1687-8434
1687-8442