The Mechanism of Ammonia-Assimilating Bacteria Promoting the Growth of Oyster Mushrooms (<i>Pleurotus ostreatus</i>)
Oyster mushrooms (<i>Pleurotus ostreatus</i>) are one of the most commonly grown edible mushrooms using compost, which contains high concentrations of ammonia. In this study, inoculation of the oyster mushroom culture substrate with ammonia-assimilating bacterium <i>Enterobacter<...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Journal of Fungi |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2309-608X/11/2/130 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Oyster mushrooms (<i>Pleurotus ostreatus</i>) are one of the most commonly grown edible mushrooms using compost, which contains high concentrations of ammonia. In this study, inoculation of the oyster mushroom culture substrate with ammonia-assimilating bacterium <i>Enterobacter</i> sp. B12, either before or after composting, reduced the ammonia nitrogen content, increased the total nitrogen content of the compost, and enhanced the mushroom yield. Co-cultivation with <i>P. ostreatus</i> mycelia on potato dextrose agar (PDA) plates containing 200 mM NH<sub>4</sub><sup>+</sup>, B12 reduced reactive oxygen species (ROS) accumulation in the mycelia and downregulated the expression of the ROS-generating enzymes NADPH oxidase A (NOXA) and the stress hormone ethylene synthase 1-aminocyclopropane-1-carboxylate oxidase (ACO). It also downregulated the expression of the ammonia-assimilating related genes in the mycelia, such as glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), ammonia transporter protein (AMT), and amino acid transporter protein (AAT), while upregulating its own ammonia-assimilation genes. These findings suggest that the mechanism by which B12 promoted oyster mushroom growth was that B12 assimilated ammonia, alleviated ammonia stress, mitigated ROS accumulation in the mycelia, and supplied ammonia and amino acids to the mycelia. To our knowledge, ammonia-assimilating bacteria are a novel type of mushroom growth promoter (MGP). |
|---|---|
| ISSN: | 2309-608X |