Selection of a Probability Model Adapted to the Current Climate for Annual Maximum Daily Rainfall in the Benin Mono-Couffo Basin (West Africa)
The control of rainfall extremes is essential in the design of hydro-agricultural works, as their performance depends on it. This study aims to determine the best-fit probability model suited to current climatic conditions in the Mono-Couffo basin in Benin. To this end, daily rainfall data from six...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Hydrology |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5338/12/4/86 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The control of rainfall extremes is essential in the design of hydro-agricultural works, as their performance depends on it. This study aims to determine the best-fit probability model suited to current climatic conditions in the Mono-Couffo basin in Benin. To this end, daily rainfall data from six rainfall stations from 1981 to 2021 were used. The application of the Decision Support System (DSS) with graphical and numerical performance criteria (such as RMSE, SD, and CC represented by the Taylor diagram; <i>AIC</i> and <i>BIC</i>) made it possible to identify the best distribution class and then to select the most suitable distribution for this basin. The results indicate that class C distributions, characterized by regular variations, are the most appropriate for the modeling maximum annual daily precipitation at all stations (78% of cases). Of these, the Inverse Gamma distribution proved to be the most suitable, although its estimation errors ranged from 16.47 mm/d at Aplahoué to 39.80 mm/d at Grand-Popo. The second most appropriate distribution is the Log-Pearson Type III. The use of the Inverse Gamma distribution is, therefore, recommended for hydro-agricultural development studies in the Mono-Couffo basin. |
|---|---|
| ISSN: | 2306-5338 |