Metformin Reduces Lipotoxicity-Induced Meta-Inflammation in β-Cells through the Activation of GPR40-PLC-IP3 Pathway
Background and Purpose. Metformin, a widely used antidiabetic drug, has been shown to have anti-inflammatory properties; nevertheless, its influence on β-cell meta-inflammation remains unclear. The following study investigated the effects of metformin on meta-inflammatory in β-cells and whether the...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Journal of Diabetes Research |
Online Access: | http://dx.doi.org/10.1155/2019/7602427 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background and Purpose. Metformin, a widely used antidiabetic drug, has been shown to have anti-inflammatory properties; nevertheless, its influence on β-cell meta-inflammation remains unclear. The following study investigated the effects of metformin on meta-inflammatory in β-cells and whether the underlying mechanisms were associated with the G protein-coupled receptor 40-phospholipase C-inositol 1, 4, 5-trisphosphate (GPR40-PLC-IP3) pathway. Materials and Methods. Lipotoxicity-induced β-cells and the high-fat diet-induced obese rat model were used in the study. Results. Metformin-reduced lipotoxicity-induced β-cell meta-inflammatory injury was associated with the expression of GPR40. GPR40 was involved in metformin reversing metabolic inflammation key marker TLR4 activation-mediated β-cell injury. Furthermore, downstream signaling protein PLC-IP3 of GPR40 was involved in the protective effect of metformin on meta-inflammation, and the above process of metformin was partially regulated by AMPK activity. In addition, the anti-inflammatory effects of metformin were observed in obese rats. Conclusion. Metformin can reduce lipotoxicity-induced meta-inflammation in β-cells through the regulation of the GPR40-PLC-IP3 pathway and partially via the regulation of AMPK activity. |
---|---|
ISSN: | 2314-6745 2314-6753 |