SWRD–YOLO: A Lightweight Instance Segmentation Model for Estimating Rice Lodging Degree in UAV Remote Sensing Images with Real-Time Edge Deployment
Rice lodging severely affects crop growth, yield, and mechanized harvesting efficiency. The accurate detection and quantification of lodging areas are crucial for precision agriculture and timely field management. However, Unmanned Aerial Vehicle (UAV)-based lodging detection faces challenges such a...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Agriculture |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-0472/15/15/1570 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Rice lodging severely affects crop growth, yield, and mechanized harvesting efficiency. The accurate detection and quantification of lodging areas are crucial for precision agriculture and timely field management. However, Unmanned Aerial Vehicle (UAV)-based lodging detection faces challenges such as complex backgrounds, variable lighting, and irregular lodging patterns. To address these issues, this study proposes SWRD–YOLO, a lightweight instance segmentation model that enhances feature extraction and fusion using advanced convolution and attention mechanisms. The model employs an optimized loss function to improve localization accuracy, achieving precise lodging area segmentation. Additionally, a grid-based lodging ratio estimation method is introduced, dividing images into fixed-size grids to calculate local lodging proportions and aggregate them for robust overall severity assessment. Evaluated on a self-built rice lodging dataset, the model achieves 94.8% precision, 88.2% recall, 93.3% mAP@0.5, and 91.4% F1 score, with real-time inference at 16.15 FPS on an embedded NVIDIA Jetson Orin NX device. Compared to the baseline YOLOv8n-seg, precision, recall, mAP@0.5, and F1 score improved by 8.2%, 16.5%, 12.8%, and 12.8%, respectively. These results confirm the model’s effectiveness and potential for deployment in intelligent crop monitoring and sustainable agriculture. |
|---|---|
| ISSN: | 2077-0472 |