H1∩Lp versus C1 Local Minimizers

We show that a local minimizer of Φ in the C1 topology must be a local minimizer in the H1∩Lp topology, under suitable assumptions for the functional Φ=(1/2)∫Ω|∇u|2+(1/p)∫Ω|u|p−∫ΩF(x,u) with supercritical exponent p>2∗=2n/(n−2). This result can be used to establish a solution to the corresponding...

Full description

Saved in:
Bibliographic Details
Main Author: Yansheng Zhong
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/646145
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552670224711680
author Yansheng Zhong
author_facet Yansheng Zhong
author_sort Yansheng Zhong
collection DOAJ
description We show that a local minimizer of Φ in the C1 topology must be a local minimizer in the H1∩Lp topology, under suitable assumptions for the functional Φ=(1/2)∫Ω|∇u|2+(1/p)∫Ω|u|p−∫ΩF(x,u) with supercritical exponent p>2∗=2n/(n−2). This result can be used to establish a solution to the corresponding equation admitting sub- and supersolution. Hence, we extend the conclusion proved by Brezis and Nirenberg (1993), the subcritical and critical case.
format Article
id doaj-art-ca5f86fb3d724a43ae9fd79d4121a618
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-ca5f86fb3d724a43ae9fd79d4121a6182025-02-03T05:58:14ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/646145646145H1∩Lp versus C1 Local MinimizersYansheng Zhong0Department of Mathematics, Fujian Normal University, Fuzhou 350117, ChinaWe show that a local minimizer of Φ in the C1 topology must be a local minimizer in the H1∩Lp topology, under suitable assumptions for the functional Φ=(1/2)∫Ω|∇u|2+(1/p)∫Ω|u|p−∫ΩF(x,u) with supercritical exponent p>2∗=2n/(n−2). This result can be used to establish a solution to the corresponding equation admitting sub- and supersolution. Hence, we extend the conclusion proved by Brezis and Nirenberg (1993), the subcritical and critical case.http://dx.doi.org/10.1155/2014/646145
spellingShingle Yansheng Zhong
H1∩Lp versus C1 Local Minimizers
Abstract and Applied Analysis
title H1∩Lp versus C1 Local Minimizers
title_full H1∩Lp versus C1 Local Minimizers
title_fullStr H1∩Lp versus C1 Local Minimizers
title_full_unstemmed H1∩Lp versus C1 Local Minimizers
title_short H1∩Lp versus C1 Local Minimizers
title_sort h1∩lp versus c1 local minimizers
url http://dx.doi.org/10.1155/2014/646145
work_keys_str_mv AT yanshengzhong h1lpversusc1localminimizers