Parallel convolutional neural network and empirical mode decomposition for high accuracy in motor imagery EEG signal classification.
In recent years, the utilization of motor imagery (MI) signals derived from electroencephalography (EEG) has shown promising applications in controlling various devices such as wheelchairs, assistive technologies, and driverless vehicles. However, decoding EEG signals poses significant challenges du...
Saved in:
Main Authors: | Jaipriya D, Sriharipriya K C |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2025-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0311942 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Parallel convolutional neural network and empirical mode decomposition for high accuracy in motor imagery EEG signal classification
by: Jaipriya D., et al.
Published: (2025-01-01) -
A composite improved attention convolutional network for motor imagery EEG classification
by: Wenzhe Liao, et al.
Published: (2025-02-01) -
A Synergy of Convolutional Neural Networks for Sensor-Based EEG Brain–Computer Interfaces to Enhance Motor Imagery Classification
by: Souheyl Mallat, et al.
Published: (2025-01-01) -
FBATCNet: A Temporal Convolutional Network With Frequency Band Attention for Decoding Motor Imagery EEG
by: Shuaishuai Ma, et al.
Published: (2025-01-01) -
Motor Imagery EEG Classification Based on Multi-Domain Feature Rotation and Stacking Ensemble
by: Xianglong Zhu, et al.
Published: (2025-01-01)