The association between recent stressful life events and brain structure: a UK Biobank longitudinal MRI study

Abstract Background Recent stressful life events (SLEs) are an established risk factor for a range of psychiatric disorders. Animal studies have shown evidence of gray matter (GM) reductions associated with stress, and previous work has found similar associations in humans. However longitudinal stud...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheryl R.Z. See, Annabel X. Tan, Lucia R. Valmaggia, Matthew J. Kempton
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:European Psychiatry
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S0924933825000021/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Recent stressful life events (SLEs) are an established risk factor for a range of psychiatric disorders. Animal studies have shown evidence of gray matter (GM) reductions associated with stress, and previous work has found similar associations in humans. However longitudinal studies investigating the association between stress and changes in brain structure are limited. Methods The current study uses longitudinal data from the UK Biobank and comprises 4,543 participants with structural neuroimaging and recent SLE data (mean age = 61.5 years). We analyzed the association between recent SLEs and changes in brain structure, determined using the longitudinal FreeSurfer pipeline, focusing on total GM volume and five a priori brain regions: the hippocampus, amygdala, anterior cingulate cortex, orbitofrontal cortex, and insula. We also examined if depression and childhood adversity moderated the relationship between SLEs and brain structure. Results Individuals who had experienced recent SLEs exhibited a slower rate of hippocampal decrease over time compared to individuals who did not report any SLEs. Individuals with depression exhibited smaller GM volumes when exposed to recent SLEs. There was no effect of childhood adversity on the relationship between SLEs and brain structure. Conclusions Our findings suggest recent SLEs are not directly associated with an accelerated decline in brain volumes in a population sample of older adults, but instead may alter brain structure via affective disorder psychopathology. Further work is needed to investigate the effects of stress in younger populations who may be more vulnerable to stress-induced changes, and may yet pinpoint brain regions linked to stress-related disorders.
ISSN:0924-9338
1778-3585