The Assymptotic Invariants of a Fermat-Type Set of Points in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mn mathvariant="bold">3</mn></msup></semantics></math></inline-formula>
In this paper, we compute asymptotic invariants—specifically, the Waldschmidt constants and the Seshadri constants—of a set of 31 points in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvarian...
Saved in:
| Main Authors: | Mikołaj Le Van, Tomasz Szemberg |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/12/24/3945 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Conceptual Neighborhood Graphs of Topological Relations in <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>
by: Brendan Patrick Hall, et al.
Published: (2025-03-01) -
Analysis of Operators with Complex Gaussian Kernels over <inline-formula><math display="inline"><semantics><msup><mn mathvariant="script">ℰ</mn><mo>′</mo></msup></semantics></math></inline-formula>(ℝ): Abelian Theorems
by: Hari M. Srivastava, et al.
Published: (2025-06-01) -
On (<i>i</i>)-Curves in Blowups of <named-content content-type="inline-formula"><inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">P</mi><mi mathvariant="bold-italic">r</mi></msup></semantics></math></inline-formula></named-content>
by: Olivia Dumitrescu, et al.
Published: (2024-12-01) -
On the Generalized Fractional Convection–Diffusion Equation with an Initial Condition in <inline-formula><math display="inline"><semantics><mrow><msup><mi mathvariant="double-struck">R</mi><mi mathvariant="bold-italic">n</mi></msup></mrow></semantics></math></inline-formula>
by: Chenkuan Li, et al.
Published: (2025-05-01) -
On the Abscissa of Convergence of Laplace–Stieltjes Integrals in the Euclidean Real Vector Space <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>p</mi></msup></semantics></math></inline-formula>
by: Andriy Bandura, et al.
Published: (2025-03-01)