Research on the Sensitivity Enhancement Method of Inductive Conductivity Sensors Based on Impedance Matching

This paper presents the design and performance evaluation of an inductive conductivity sensor with a double tuning impedance matching network to enhance sensitivity and improve linearity. The sensor’s equivalent circuit model is analyzed and verified through simulation, and impedance matching is sho...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang Li, Rongxing Yu, Zhiqiang Liu, Yujie Gao, Chengxu Tang, Qiao Li, Chao Yuan
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/293
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the design and performance evaluation of an inductive conductivity sensor with a double tuning impedance matching network to enhance sensitivity and improve linearity. The sensor’s equivalent circuit model is analyzed and verified through simulation, and impedance matching is shown to significantly increase the sensor’s output signal, particularly at low conductivity measurements. Double tuning impedance matching expands the frequency response range and optimizes power transfer efficiency, achieving a higher power factor across a broader frequency range. Experimental results confirm that the sensor’s sensitivity increases by approximately 30% after impedance matching with optimal performance at a frequency of 9865 Hz. Furthermore, while the impedance matching improves sensitivity, it also introduces some nonlinear errors, which are evaluated using a performance function that balances sensitivity and linearity. The results demonstrate that impedance matching enhances the sensor’s measurement capability, making it more effective in practical applications where conductivity changes need to be accurately monitored across varying frequencies.
ISSN:1424-8220