Composite Fault Diagnosis for Rotating Machinery of Large Units Based on Evidence Theory and Multi-Information Fusion

Due to the complexity of the structure and process of large-scale petrochemical equipment, different fault characteristics are mixed and present multiple couplings and ambiguities, leading to the difficulty in identifying composite faults in rotating machinery. This paper proposes a composite faults...

Full description

Saved in:
Bibliographic Details
Main Authors: Naiquang Su, Xiao Li, Qinghua Zhang, Zhiqiang Huo
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/1982317
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the complexity of the structure and process of large-scale petrochemical equipment, different fault characteristics are mixed and present multiple couplings and ambiguities, leading to the difficulty in identifying composite faults in rotating machinery. This paper proposes a composite faults diagnosis method for rotating machinery of the large unit based on evidence theory and multi-information fusion. The evidence theory and multi-information fusion method mainly deal with multisource information and conflict information, synthesize multiple uncertain information, and obtain synthetic information from multiple data sources. To detect faults in rotating machinery, the dimensionless index ranges of composite faults are first used to form a feature set as the reference. Then, a two-sample distribution test is applied to compare the known fault samples with the tested fault samples, and the maximum statistical distance is used. Finally, the multiple maximum statistical distances are fused by evidence theory and identifying fault types based on the fusion result. The proposed method was applied to the large petrochemical unit simulation experiment system, the results of which showed that our proposed method could accurately identify composite faults and provide maintenance guidance for composite fault diagnosis.
ISSN:1070-9622
1875-9203