Advances in Food Aroma Analysis: Extraction, Separation, and Quantification Techniques

Decoding the aroma composition plays a key role in designing and producing foods that consumers prefer. Due to the complex matrix and diverse aroma compounds of foods, isolation and quantitative analytical methods were systematically reviewed. Selecting suitable and complementary aroma extraction me...

Full description

Saved in:
Bibliographic Details
Main Authors: Dandan Pu, Zikang Xu, Baoguo Sun, Yanbo Wang, Jialiang Xu, Yuyu Zhang
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/8/1302
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Decoding the aroma composition plays a key role in designing and producing foods that consumers prefer. Due to the complex matrix and diverse aroma compounds of foods, isolation and quantitative analytical methods were systematically reviewed. Selecting suitable and complementary aroma extraction methods based on their characteristics can provide more complete aroma composition information. Multiple mass spectrometry detectors (MS, MS/MS, TOF-MS, IMS) and specialized detectors, including flame ionization detector (FID), electron capture detector (ECD), nitrogen–phosphorus detector (NPD), and flame photometric detector (FPD), are the most important qualitative technologies in aroma identification and quantification. Furthermore, the real-time monitoring of aroma release and perception is an important developing trend in the aroma perception of future food. A combination of artificial intelligence for chromatographic analysis and characteristic databases could significantly improve the qualitative analysis efficiency and accuracy of aroma analysis. External standard method and stable isotope dilution analysis were the most popular quantification methods among the four quantification methods. The combination with flavoromics enables the decoding of aroma profile contributions and the identification of characteristic marker aroma compounds. Aroma analysis has a wide range of applications in the fields of raw materials selection, food processing monitoring, and products quality control.
ISSN:2304-8158