Development and validation of a scoring system to predict MASLD patients with significant hepatic fibrosis

Abstract To address the need for a simple model to predict ≥ F2 fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, a study utilized data from 791 biopsy-proven MASLD patients from the NASH Clinical Research Network and Jinan University First Affiliated Hospital. T...

Full description

Saved in:
Bibliographic Details
Main Authors: Linjing Long, Yue Wu, Huijun Tang, Yanhua Xiao, Min Wang, Lianli Shen, Ying Shi, Shufen Feng, Chujing Li, Jiaheng Lin, Shaohui Tang, Chutian Wu
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-91013-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract To address the need for a simple model to predict ≥ F2 fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, a study utilized data from 791 biopsy-proven MASLD patients from the NASH Clinical Research Network and Jinan University First Affiliated Hospital. The data were divided into training and internal testing sets through randomized stratified sampling. A multivariable logistic regression model using key categorical variables was developed to identify ≥ F2 fibrosis. External validation was performed using data from the FLINT trial and multiple centers in China. The DA-GAG score, incorporating diabetes, age, GGT, aspartate aminotransferase/ platelet ratio, and globulin/ total protein ratio, demonstrated superior performance in distinguishing ≥ F2 fibrosis with an area under the receiver operating characteristic curve of 0.79 in training and over 0.80 in testing datasets. The DA-GAG score efficiently identifies MASLD patients with ≥ F2 fibrosis, significantly reducing the medical burden.
ISSN:2045-2322