Harmonic morphisms and subharmonic functions

Let M be a complete Riemannian manifold and N a complete noncompact Riemannian manifold. Let ϕ:M→N be a surjective harmonic morphism. We prove that if N admits a subharmonic function with finite Dirichlet integral which is not harmonic, and ϕ has finite energy, then ϕ is a constant map. Similarly,...

Full description

Saved in:
Bibliographic Details
Main Authors: Gundon Choi, Gabjin Yun
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.383
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let M be a complete Riemannian manifold and N a complete noncompact Riemannian manifold. Let ϕ:M→N be a surjective harmonic morphism. We prove that if N admits a subharmonic function with finite Dirichlet integral which is not harmonic, and ϕ has finite energy, then ϕ is a constant map. Similarly, if f is a subharmonic function on N which is not harmonic and such that |df| is bounded, and if ∫M|dϕ|<∞, then ϕ is a constant map. We also show that if Nm(m≥3) has at least two ends of infinite volume satisfying the Sobolev inequality or positivity of the first eigenvalue of the Laplacian, then there are no nonconstant surjective harmonic morphisms with finite energy. For p-harmonic morphisms, similar results hold.
ISSN:0161-1712
1687-0425