The Discrete Ueda System and Its Fractional Order Version: Chaos, Stabilization and Synchronization

The Ueda oscillator is one of the most popular and studied nonlinear oscillators. Whenever subjected to external periodic excitation, it exhibits a fascinating array of nonlinear behaviors, including chaos. This research introduces a novel fractional discrete Ueda system based on <inline-formula&...

Full description

Saved in:
Bibliographic Details
Main Authors: Louiza Diabi, Adel Ouannas, Amel Hioual, Giuseppe Grassi, Shaher Momani
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/239
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588090008403968
author Louiza Diabi
Adel Ouannas
Amel Hioual
Giuseppe Grassi
Shaher Momani
author_facet Louiza Diabi
Adel Ouannas
Amel Hioual
Giuseppe Grassi
Shaher Momani
author_sort Louiza Diabi
collection DOAJ
description The Ueda oscillator is one of the most popular and studied nonlinear oscillators. Whenever subjected to external periodic excitation, it exhibits a fascinating array of nonlinear behaviors, including chaos. This research introduces a novel fractional discrete Ueda system based on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Y</mi></semantics></math></inline-formula>-th Caputo fractional difference and thoroughly investigates its chaotic dynamics via commensurate and incommensurate orders. Applying numerical methods like maximum Lyapunov exponent spectra, bifurcation plots, and phase plane. We demonstrate the emergence of chaotic attractors influenced by fractional orders and system parameters. Advanced complexity measures, including approximation entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>p</mi><mi>E</mi><mi>n</mi></mrow></semantics></math></inline-formula>) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mn>0</mn></msub></semantics></math></inline-formula> complexity, are applied to validate and measure the nonlinear and chaotic nature of the system; the results indicate a high level of complexity. Furthermore, we propose a control scheme to stabilize and synchronize the introduced Ueda map, ensuring the convergence of trajectories to desired states. MATLAB R2024a simulations are employed to confirm the theoretical findings, highlighting the robustness of our results and paving the way for future works.
format Article
id doaj-art-c8fff27d76d445f6820af6c2d582a035
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-c8fff27d76d445f6820af6c2d582a0352025-01-24T13:39:51ZengMDPI AGMathematics2227-73902025-01-0113223910.3390/math13020239The Discrete Ueda System and Its Fractional Order Version: Chaos, Stabilization and SynchronizationLouiza Diabi0Adel Ouannas1Amel Hioual2Giuseppe Grassi3Shaher Momani4Laboratory of Dynamical Systems and Control, Department of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, AlgeriaDepartment of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, AlgeriaDepartment of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, AlgeriaDipartimento Ingegneria Innovazione, Universita del Salento, 73100 Lecce, ItalyNonlinear Dynamics Research Center, Ajman University, Ajman 346, United Arab EmiratesThe Ueda oscillator is one of the most popular and studied nonlinear oscillators. Whenever subjected to external periodic excitation, it exhibits a fascinating array of nonlinear behaviors, including chaos. This research introduces a novel fractional discrete Ueda system based on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Y</mi></semantics></math></inline-formula>-th Caputo fractional difference and thoroughly investigates its chaotic dynamics via commensurate and incommensurate orders. Applying numerical methods like maximum Lyapunov exponent spectra, bifurcation plots, and phase plane. We demonstrate the emergence of chaotic attractors influenced by fractional orders and system parameters. Advanced complexity measures, including approximation entropy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>p</mi><mi>E</mi><mi>n</mi></mrow></semantics></math></inline-formula>) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mn>0</mn></msub></semantics></math></inline-formula> complexity, are applied to validate and measure the nonlinear and chaotic nature of the system; the results indicate a high level of complexity. Furthermore, we propose a control scheme to stabilize and synchronize the introduced Ueda map, ensuring the convergence of trajectories to desired states. MATLAB R2024a simulations are employed to confirm the theoretical findings, highlighting the robustness of our results and paving the way for future works.https://www.mdpi.com/2227-7390/13/2/239Ueda mapchaoscontrolcommensurate orderincommensurate ordersynchronization
spellingShingle Louiza Diabi
Adel Ouannas
Amel Hioual
Giuseppe Grassi
Shaher Momani
The Discrete Ueda System and Its Fractional Order Version: Chaos, Stabilization and Synchronization
Mathematics
Ueda map
chaos
control
commensurate order
incommensurate order
synchronization
title The Discrete Ueda System and Its Fractional Order Version: Chaos, Stabilization and Synchronization
title_full The Discrete Ueda System and Its Fractional Order Version: Chaos, Stabilization and Synchronization
title_fullStr The Discrete Ueda System and Its Fractional Order Version: Chaos, Stabilization and Synchronization
title_full_unstemmed The Discrete Ueda System and Its Fractional Order Version: Chaos, Stabilization and Synchronization
title_short The Discrete Ueda System and Its Fractional Order Version: Chaos, Stabilization and Synchronization
title_sort discrete ueda system and its fractional order version chaos stabilization and synchronization
topic Ueda map
chaos
control
commensurate order
incommensurate order
synchronization
url https://www.mdpi.com/2227-7390/13/2/239
work_keys_str_mv AT louizadiabi thediscreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT adelouannas thediscreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT amelhioual thediscreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT giuseppegrassi thediscreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT shahermomani thediscreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT louizadiabi discreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT adelouannas discreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT amelhioual discreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT giuseppegrassi discreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization
AT shahermomani discreteuedasystemanditsfractionalorderversionchaosstabilizationandsynchronization