Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends
Inorganic nanofillers are often added into polymer/elastomer blends as a third component to modify their performance. This work aims to clarify the role of interface-localized spherical nanoparticles in determining the impact toughness of polymer blends. The selective distribution of titanium dioxid...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Budapest University of Technology and Economics
2013-03-01
|
| Series: | eXPRESS Polymer Letters |
| Subjects: | |
| Online Access: | http://www.expresspolymlett.com/letolt.php?file=EPL-0004049&mi=cd |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Inorganic nanofillers are often added into polymer/elastomer blends as a third component to modify their performance. This work aims to clarify the role of interface-localized spherical nanoparticles in determining the impact toughness of polymer blends. The selective distribution of titanium dioxide (TiO2) nanoparticles in poly(L-lactide)/poly(ether) urethane (PLLA/PU) blends was investigated by using scanning electron microscope. It is interesting to find that, regardless of the method of TiO2 introduction, nano-TiO2 particles are always selectively localized at the phase interface between PLLA and PU, leading to a significant improvement in notched Izod impact toughness. The moderately weakened interfacial adhesion induced by the interfacially-localized nano-TiO2 particles is believed to be the main reason for the largely enhanced impact toughness. |
|---|---|
| ISSN: | 1788-618X |